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ABSTRACT 

Interactions of gas and electricity distribution network through hybrid technologies might offer 

potential benefits for the whole energy infrastructure. Yet the impact of distributed hybrid technologies, 

micro-cogeneration and hybrid heat pumps, on gas and electricity loads is difficult to predict and is 

dependent on building stock and energy practices among other variables. This article proposes a 

methodology to build an Engineering Bottom-Up model which is consistent with regional top-down 

data. The structure of the model is presented, and finally a case study illustrates expected results from 

the model. The developed approach will help regional planning decision maker to consider hybrid gas-

electricity technologies. 
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PAPER 

1 INTRODUCTION 

 

1.1 Context and background 

European gas demand of residential and industrial sectors are expected to have a limited 

growth. In France, the main gas transport system operator even expects a decrease of 0.2% of the 

gas load at peak conditions [1]. This rate is the average annual rate foreseen for the next 10 year 

period. In fact, many reasons justify such an assumption: political commitment regarding energy 

consumption reduction, insulation of the national building stock ... On the other hand, the gas demand 

on transport network is supposed to increase due to power generation through combined cycle power 

plants. Many projects are blooming in the northern European countries to ensure the security of 

electricity supply and cope with the growth of electricity peak demand (significant increase in France 

[2] in recent years).  

Another element of the context is the evolution of distribution networks. Tomorrow, energy 

infrastructures will be oriented toward smart solutions, especially in electricity where Smart Grid is 

gaining momentum. This evolution is mainly justified by the integration of renewable energy, and peak 

load management. Load shifting and/or shedding are potential leverages offered from smart solutions 

to optimise electricity infrastructure. In addition, new gas technologies such as micro-cogeneration and 

hybrid heat-pumps may offer a good opportunity to optimise electricity network and play a role in smart 

grid deployments. Indeed, such systems are onsite solutions that have the ability to interact with 

electricity demand. Furthermore, if the dispatch of electrical loads and storage management are key 

issues to deal with daily variations, no seasonal storage solution seems viable in the mid-term 

considering the technical and economical equation. Hence, distributed hybrid gas-electricity 

technologies might bring benefits to local electricity grid without significant impact on the gas network.  

The overall benefits would be: 

 To reduce electricity grid losses ; 

 To relieve electricity network capacity, because electricity peak demand is highly correlated with 

heating demand in winter (especially in some countries like France). 

 To stabilise gas distribution transit, and hence optimise the overall energy gas-electricity 

infrastructure 

 To enhance global efficiency with onsite solution. 

1.2 Motivations  

The study deals with micro-cogeneration and hybrid heat pumps. Micro-cogeneration, or micro 

combined heat and power (µCHP), has the ability to produce electricity locally while electricity demand 

is high in winter; and hybrid heat-pump can switch from electricity to gas in order to limit electrical 

load.  Indeed, correlation of low temperature and electricity demand is high and investigated in [3] for 

different cities. The purpose of this work consists in quantifying the impacts of gas technologies on gas 

and electricity infrastructures. This part is essential to answer the key question: is it viable to deploy 

new distributed gas technologies; against centralised solutions that benefit from significant economy of 

scale? Gas and electricity distribution network interactions may effectively provide significant benefits 

to energy infrastructures, but how much? 

The degree of precision required, and thus the number of inputs, is related to spatial and 

temporal scales. If interested in individual household loads it seems difficult to draw conclusion from a 

modelling framework. Experimental field tests are more relevant to investigate real behaviours of 
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loads. For instance Vuillecard et al presented impact results from field test measurements. Figure 1, 

extracted from [4], illustrates the potential of µCHP to relieve electricity demand in winter for a group of 

40 dwellings in France equipped with Stirling engine gas boilers. This chart shows that this technology 

can generate nearly half of the electricity demand in gas heated dwellings in winter time. In term of 

load management, micro-cogeneration reduced the peak demand up to 34 % in January and 17% 

through the entire year [4].  

 

Figure 1 - electricity demand, and generation from µCHP 

  On the other hand, if interested in a zone of residential area of a city or a region, it seems 

impossible to set up a complete instrumentation of each dwellings but instead modelling appears to be 

the only way. And our motivation is guided by the will to quantify the impact of hybrid technologies to 

an aggregate load of a region. Aggregate loads are easier to handle due to the statistical aggregation. 

Indeed, to a certain extent, aggregate electricity load becomes stationary and predictable. So it seems 

possible to model and validate the aggregate load while detailed household load modelling might be 

difficult to treat.  

Gas and electricity loads may interact to heat Domestic Hot Water and/or to provide Space 

Heating (SH) to dwellings. The study concentrates on residential heating demand which is mainly 

responsible for winter electricity peaks. So the ability of quantifying load changes from hybrid 

technologies is highly dependent on heating load modelling. In order to quantify the impact of each 

heating technology on gas and electricity load behaviours a physical description of homogenous types 

of dwellings is required. A literature review will guide our methodology. 

1.3 Literature review 

Our work can be related to planning issues. Distributed Network Operators and Transport System 

Operators have to forecast load evolution to anticipate network re design. This issue is common to 

every utility. In the article entitled ‘load prediction method for heat and electricity demand in buildings 

for the purpose of planning for mixed energy distributions systems’ [5] the authors propose a heat load 

model based on regression analyses with daily mean temperature, and statistic distribution for 

electricity appliances consumption. The methodology allows to assess peak loads and energy 

consumption for a specific area with a given composition of building categories. Regression analysis 

of hourly energy consumption to mean daily external temperature is also called Energy Signature 

(ES). A more sophisticated ES model is found in [6] to model aggregate cooling load. Explanatory 

variables are: diffuse radiation, direct radiation on vertical surface, specific humidity and temperature; 

thus multi linear regression techniques are applied. Building inertia has not been modelled because it 

has a second order effect on daily cooling loads. On the contrary, heating loads are concerned with 

inertia for areas with high thermal mass buildings. For instance in France, daily gas load profile 

models use a smoothed temperature to account for delay effect. Such statistical analysis relies on 
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metered data and is not able to model gas or electricity loads from various systems. Such limitations 

are highlighted in [7] and [8]. They recall us the inability of top-down approach (for large scale area) in 

dealing with new technologies and physical factors in buildings, and the necessity of setting up an 

Engineering Bottom-Up model. 

Instead of statistical methods, engineering methods are the only way to study the impact of one 

technology to another on loads. Engineering Bottom-Up Models are based on three techniques: 

Distributions, Archetypes, and Sample, see [7]. The last is data intensive, so the applicability is limited, 

and the first does not really apply for our intention which is only SH. Thus we will concentrate on 

archetype method which consists in few homogeneous groups of building that can be characterised 

with physical parameters. In [8] bottom-up models for simulating a building stock are reviewed. All 

those models are intended to calculate energy consumption annually or monthly. Detailed simulation 

of space conditioning loads have been conducted by Huang and Brodrick [9] with 144 hourly 

simulations of residential building with the DOE-2.1E program. They concluded that the estimated 

energy consumption with the bottom-up model matched with top-down statistical approach, and that 

detailed hourly load shapes could be useful to develop energy services contracts. But no hourly, or 

daily, load validation is proposed. 

Reviews pointed out that the major drawback of Engineering Bottom-up Models is the assumption of 

occupant behaviour [8] [7]. Besides, indoor temperature is a key parameter for space-heating 

consumption and is often unknown and unmeasured. Based on a validated survey of 923 households, 

Cayla et al exploited a database with technical, weather, energy practices, and socio-demographic 

variables describing each household, [10]. A multi-regression analysis shows that 50% of the space 

heating energy variance is explained, with a proportion of 66% for technical-environment and 33% of 

socio-demographic and energy practices explanatory variables. This finding is consistent with other 

studies and proves that SH demand on an individual dwelling scale is largely dependent on non-

physical parameters.  

Another similar issue has been raised by electricity utilities, the Cold Load Pick Up problem. After an 

extended power outage in winter, Distribution Network Operator has to quantify the magnitude of the 

load supplying heaters once the current is back on. Those issues are more relevant for a small area 

but still the heating load dynamic has been faced. For instance in [11] the authors generate electrical 

load for a thermostatically controlled heating with an equation with two components, C, the building 

thermal mass in kWh/°C, and G, building equivalent thermal conductance in kW/°C. 

This simplified model, a one order model, is widely used for cold load pickup prediction applications, in 

[12] as well.  The methodology is quite similar to an Engineering Bottom-up Model with a need to 

obtain physical description of dwellings with limited inputs for a realistic aggregate load. In [11] all 

parameters came from state agencies and questionnaires, and in [12] they came from Hydro Quebec 

and tuned to match the load characteristics for each utility (mean, and standard deviation): 

- G = 1/R, mean building equivalent thermal conductance, kW/°C; 

- C, mean building capacity, kWh/°C; 

- Thermostat deadband, °C; 

- Mean thermostat high point during the day, °C; 

- Mean thermostat stepoint during the night, °C; 

Validation is done with comparison of actual feeder load to model output. 

Although the aggregation modelling is similar to our aim, this approach does not suit to our 

objectives because it is too dedicated to power prediction and is not consistent with yearly space 

heating demand. A more realistic building model is compared with field test data by Savery and Lee 
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[13]. The use of 2 capacitances and 3 resistances, a third order building model, revealed to be 

satisfying to model the long and short dynamics.  

Focusing on the building model itself, we refer to the publication of Bacher and Madsen [14] 

who compared few model structures for building identification process on an experimental building: 

from a simple model of 3 parameters, equivalent of the one-order model of [12] and [11] (except that 

solar radiation is included), to a 10 parameter model with a much higher degree of complexity. The 

main inconvenient for our interest is that the test building has lightweight outdoor walls. Indeed, it is 

known that the complexity of the model is dependent on the structure of the housing. For instance, 

lightweight constructions have low thermal inertia and the number of nodes required in walls can be 

lower than thick brick wall buildings for finite difference calculation. In [15], Fraisse et al studied the 

impact of the number of elements on the transient heat transfer on a wall composed of 8 cm exterior 

insulation and 16 cm concrete. They compared few arrangements of nodes within the wall, and 

different model order, and they show that wall responses are distorted with the number of node 

temperatures. A good agreement seems achieved for 3R2C wall models; higher orders do not provide 

significant improvement regarding our issue. 

The structure of the building model varies with the objectives of such models. Yet there is a 

common feature, the buildings are represented with a unique inside temperature for a mean room of 

the building, in other words mono-zone thermal simulation. This assumption means that the 

representative building temperature is a weighted temperature of all rooms. 

From this analysis it is clear that our goal is in the middle of different disciplines, utility short load 

dynamic models and large bottom-up models validated in energy. The review highlighted the need of: 

- A detailed database of physical building characteristics for a fine spatial mesh; 

- Simplified building model representing thermal inertia, consistent with the objectives; 

- Realistic inputs to model a realistic load behaviour, weather and gains; 

- Statistics on heating energy practices to reduce uncertainties. 

1.4 Objectives 

Our goal consists in assessing electricity and gas load changes from hybrid gas-electricity 

heating systems. This work is ambitious because validation at a regional scale is directly dependent 

on the amount of data available (at the desired resolution). To ensure the consistency of our method 

we need to set realistic objectives. The whole model should have a part of prediction ability (meaning 

that it is able to represent real load behaviours), with some admitted uncertainties, and valid with 

Space Heating (SH) needs from top-down approach. For instance it would be unrealistic to validate 

hourly space heating load profile at large scale because the true profile does not exist; because 

aggregated with other end-uses. In addition, input parameters should be consistent with the validation 

step, a large set of input variables might be useless, and instead a focus on determinant factors is 

more relevant. Real local weather data are compulsory for any validation purpose. Even if available, 

uncertainties introduced with uniform temperature field within a mesh will remain.  

System performances are also part of the validation process. As it is impossible to model the 

real system operation at minute time steps, an hourly load is enough to obtain a good agreement 

between model and real systems (see section 2.6). So it seems feasible to evaluate system 

performance at an hourly resolution, while the load itself is validated at a daily resolution. Our model 

has the ambition to be consistent with conventional bottom-up model. 

Our objective is to model daily gas and electricity loads of dwelling heating demands at a 

regional scale. The finer mesh of the model is about 5000 km² (mean area of French department) and 

regions have an average area of 25000 km². The finer mesh decision is justified, first because the 
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amount of data available allows it, and secondly because further refinement would imply too much 

data compared to any potential improvement. 

Even if it seems difficult to assess the results’ validity, with such objectives we will be able to 

quantify the impacts of hybrid gas-electricity systems based on a likely load. Then with scenarios of 

deployment of technologies, we will be able to appreciate the effect of those technologies. Gas and 

electricity daily mean power of the residential sector will help planning decision issues. 

2 DYNAMIC BOTTOM-UP LOAD MODEL 

2.1 Methodology 

The methodology applies an Engineering Bottom-Up Model with dynamic features. As in a 

conventional model, we employ a detailed building stock database consistent with heating demand 

factors. 

Space Heating demand is dependent on many parameters illustrated on Table 1. All variables 

are considered in the model except those in italics. The impact of wind and nebulosity are second 

order effects while temperature and irradiation are first orders. Relative compactness and shape factor 

are included in the building archetype description. Window and door openings are difficult to deal with. 

Permeability is not taken into account directly but included in ventilation rates. 

Table 1- Space heating determinants 

Weather  

Temperature 
Solar irradiation 
Nebulosity (sky radiation) 
Wind 

Building 
design 

Morphology 

Relative compactness 
Shape factor 
(characteristic length) 
Surface 
Glazing area, window to 
floor area  
Orientation 

Materials 

sensible storage 
Average U-value, 
opaque and window 
Permeability 

Operation Ventilation, air change 

Occupancy 
& 

Behavioural 
factor 

Internal gain 
Specific electrical 
demand 
Human metabolism 

Comfort 
requirements 

Temperature Settings 
Thermostat setback 

Building 
usage 

Window, door opening  

 

At this stage, the model has to include: 

- Local weather data, temperature and irradiation recorded  in the biggest city of a department ; 

- Detailed housing stock description of the departments; 

- Thermostat setting profiles 

- Internal gains due to occupants’ body heat and electrical appliances 
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The last two modules are the most uncertain parts. They have to be realistic with enough diversity 

to have a chance of representing accurately the aggregate load. Few scenarios for both would not be 

realistic and consistent with our method. 

Regarding the performance of heating equipments, calculation of thermal needs is done with an 

hourly resolution in order to evaluate part loads. Yet the accuracy of aggregate load at an hourly time 

step is questionable.  

Validation 

Validation is the most difficult part of this research and not achieved yet, first because regional 

loads are not public, but also because the methodology to apply is not straightforward. The aggregate 

load is composed of different sectors than the residential one, which is a major limitation. Yet we can 

focus on prediction models to extract information on the aggregate load properties, especially on 

weekends and on Sundays while the tertiary sector is supposed not to affect the global load. First, 

both in electricity and gas, the temperature is smoothed to take into account building inertia. This 

operation can be processed at hourly or daily time steps. Secondly, another effect is predominant, the 

effect of cloud cover which prevent housing to be heated from solar radiation (at least in France). As 

presented in [16] the nebulosity interacts with the smoothed temperature to define an external 

equivalent temperature; modified by building physics. In others the wind is also considered as an 

exploratory variable, but such level of detail is out of scope (also because our study focuses on 

France). 

 

Figure 2 - Spatial and temporal resolutions of model and data 

To comply with thermal aggregate load prediction models at short time steps, our bottom-up 

approach has to include solar radiation and building inertia effect. That is why we consider large scale 

thermal dynamic simulation. This model will have the following characteristics: 

 Be consistent regarding to annual space heating consumption, for each element of the building 

stock segmentation; 

 Have similar aggregate load properties. 

So the validation procedure, presented on Figure 2, will be done in two steps: 

 Compare annual heating energy consumption [17] at regional scale for each segment; 
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 Daily load variations in winter over a month to check the load dynamic. Assuming that all energy 

usage are constant from one day to another (for same day types), and particularly that within a 

few weeks lighting needs can be considered constant. It is possible to check that load dynamic is 

similar to the modelled one. The load dynamic is characterised by the thermal-gradient and a 

smoothed temperature [16]. Unfortunately, the lack of regional data does not permit any 

comparison with metered loads. 

 

Detailed thermal building simulation requires a large amount of input data. Such details may be 

gathered for a case study which is focused on a limited area and for few buildings. Yet, in accordance 

with our goal (focusing on daily variation) we will develop a simplified dynamic model that can run 

rapidly on a personal computer, with a limited number of inputs. 

2.2 Building stock description 

Data description concerning energy source (gas, electricity, fuel oil, biomass…), location 

(regional or departmental distinction) and construction year of the building are worked out by Energie 

Demain (engineering consultant specialised in energy demand of buildings) based on French National 

public statistics institute (INSEE) population census (year 1999). Energie Demain completed this 

characterization of the building stock with physical depictions of the different architectural types (with a 

typical plan and measures) and construction materials originally used when the building was 

constructed. Energie Demain estimated the thermal renovations that have already been carried out 

according to the architectural type. We used parts of Energie Demain’s database for our study. 

The decomposition of the building stock we retained is as follows, for different 11 types of houses: 

 Energy; 

o Gas 

o Electricity 

 Vintage, year of construction : 

o before 1915 

o 1915 - 1948 

o 1949 - 1967 

o 1968 - 1974 

o 1975 - 1981 

o 1982 – 1989 

o 1999 -2005 

o after 2005 

 Main material of walls 

And for each segment the following parameters are provided: 

 Floor area 

 Wall area 

 Wall U-value 

 Roof area 

 Roof U-value 

 Rate of fenestration 

 Window U-value 

 Ventilation rate 
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In total, there are 65271 segments for all heating energies and 17603 describing electricity and 

gas heated dwellings. According to INSEE, there are 8.5 million electricity and gas heated single-

family houses in France. 

2.3 Weather data 

Both real temperature and solar radiation profiles are acquired. The resolution of temperature 

is 3 hours whereas global horizontal radiations are defined at a 1 hour time step. Temperature profiles 

come from Meteo France weather station in 47 locations covering France (mainly around big cities). 

For hourly calculation purpose, temperature profiles are interpolated linearly. Global horizontal 

radiation profiles are provided by Armines through their service SODA (Services for Professionals in 

Solar Energy and Radiation). These profiles are available for few cities.  

Solar profiles have to be treated to assess solar radiation on vertical surfaces oriented toward 

north, south, east and west and adapted to local time. The algorithm presented by Kreider and Rabl 

[18] and applied here follows the steps: 

 Transform Universal Time into solar time using the equation of time; and also generate local time 

values including day-light saving time. 

 Calculation of the zenith angle and the azimuth angle, and then the incident angle of direct solar 

radiation on vertical planes 

 To distinguish diffuse and direct radiation we use the correlation established by Erbs, clearness 

index and extraterrestrial irradiance are computed internally, with the underlying assumption of 

isotropic irradiance.  

 Global irradiances on vertical surfaces are assessed with a typical ground reflectivity of 0.2 

 Finally using typical transmittance coefficient of double glazed windows, coupled with a correlation 

for considering the impact of reflectivity, found in [19], we compute the transmitted irradiance into 

the building 

The amount of solar irradiance transmitted to the building is then calculated with the rate of 

fenestration on each orientation (north, south, east and west). The breakdown of fenestration surface 

is unknown on each wall, but is supposed to be higher on the south side of households. The influence 

of solar radiation on the walls is neglected in this study. Only the south wall is affected by a sol-air 

temperature which can be considered to be a second order effect. 

2.4 Building model 

As already noted, we need to represent thermal inertia and solar heat gain to be consistent 

with prediction model. Building stock bottom-up simulation requires a large amount of simulation to 

calculate individual loads of homogeneous groups of dwellings. To do so, we need a validated 

simplified thermal model than is able to run quickly on personal computer, and avoiding the use of 

detailed building simulation program requiring detailed description. The first assumption is that we will 

consider only monozone simplified models, meaning that indoor temperature is uniform in all rooms.  

The methodology consists in computing each thermal load for each segment. 

The literature provides few models but it seems more consistent to work on a validated model. The 

following model has been tested and validated by comparison with TRNSYS type 56:  
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Figure 3 - Building model representation 

With: 

- Ci, internal capacity of air and furniture (J/°C); 

- Cm, capacity of an equivalent mass of floor (J/°C); 

- Cj, j ϵ [1,n] capacity of the outdoor wall (J/°C); 

- Rj, j ϵ [1,n] resistance of the outdoor wall (W/°C); 

- Re, external convective heat resistance (W/°C); 

- Ri, internal convective heat resistance (W/°C); 

- Rm, resistance between mass and internal node (W/°C);  

- v, inverse of ventilation losses (W/°C); 

- w, window thermal resistance (W/°C); 

Red components of Figure 3 are fixed whereas black ones vary with the building. Tj ϵ [1,n] are internal 

variables equally spaced in a wall. Only one wall is considered to represent the dwellings envelop, 

required to model building inertia.  

Represented as conventional Linear Time Invariant, with n+2 state space variables: 

 
            

        
  

                    
  

Pheat is a binary variable equal to 0 or the installed heating power capacity {0, Pinstalled} 

controlled by a static thermostat dead-band around a set temperature (constant or with setback), 

same as [11] and (Lefebrve, 2002). Here the thermostat dead-band is narrow to be as close as 

TRNSYS, which calculates thermal needs. We neglect the sensor time constant which is in the order 

of minutes. Aint and Φs are internal gain and solar gain. The calculation is then processed with a one-

minute time step and summed at hourly time step. 

The model has been validated with TRNSYS with solar radiations, to check the physical 

consistency of heat transfer phenomenon. In fact, radiation heat transfer is not modelled. The 

methodology is the following: 

Generate house model with TRNSYS with different conductivity and heat capacity for the one-

layer outdoor wall (9 cases). The test case is a 100m² houses with one level, 13% of windows and an 

insulated roof. Window properties and ventilation rate are kept constant. The computation of the heat 

load for each building for three weather data for two heating regimes: constant indoor temperature and 

thermostat setback, so 54 cases in total. Ground heat losses are ignored in this case, as it brings 

disturbance to daily variations. Further refinement would not bring benefits to our study. Wind speed is 

ignored. In addition, sky temperature has been set equal to the ambient temperature, again to study 

the accuracy of comparable models. 

Then 4 variables are adjusted to comply with the real physics of the building (radiation heat 

transfer, sol-air temperature…): 
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 Exchange coefficient, multiply Re, Ri, Rm 

 Solar coefficient, multiply Φs; 

 Mass coefficient; multiply Cm 

 Window, roof coefficient; multiply v + w. 

In real cases, the mass Cm in a building is difficult to assess. Here, in the model, Cm equals the 

area of the building times the capacity of a 5 cm thick concrete slab. Φs is the transmitted gains 

through the windows from solar irradiation. Optimal values for each 54 simulations are calculated with 

a minimisation of The Root Mean Square Error, and a quadruplet has been chosen to prove that the 

model is robust to physical properties and climate. In Table 2, we present the errors: usually Mean 

Average Percentage Error (MAPE) is used but when values are equal to zero, the MAPE tends to 

infinity. So we define the Mean Average Relative Error (MARE) which is similar to the previous one, 

but robust regarding zero values. The MAPE can be computed with hourly or daily profiles.  

      
       

  

   

 

     
 

 
 

      
  

    

 

   

 

 

Table 2- Error betwen model and TRNSYS 

MARE Lille Nice Trappes 

Hourly 5.36% 11.17% 5.81% 

Daily 2.16% 2.92% 2.01% 

 

Daily load profiles have low relative error compared with hourly loads because hourly errors 

are aggregated within a day. We can notice that the climate of Nice, Mediterranean city, is less 

favourable to the accuracy of the model. Indeed solar irradiation is higher in Nice than in Lille and 

Trappes and the influence of the sol-air temperature disturbs the simplified model. From Figure 4 we 

see that heat load dynamic from the model is consistent with the simulated thermal load of TRNSYS. 

Yet we conclude that the developed model satisfies our requirement, it includes: 

- inertia phenomenon, represented with N nodes in the wall; 

- solar effect; 
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Figure 4 - Comparison of load model and TRNSYS 

2.5 Internal Gains 

In conventional simulation, occupation and internal gains are determined according to a 

conventional scenario and reference values. Yet for an aggregation model, it would not be 

representative to use only one or few scenarios. Then the question is what scenarios and how many ? 

Sophisticated stochastic modelling of gains could be a way to generate multiple heat gain profiles. 

However, for sake of simplicity we will use a database of 116 specific electricity profiles plus scenarios 

of occupiers’ presence. The database comes from records of electricity loads from dwellings and flats 

in France. Those profiles include all standard electricity usages apart from Domestic Hot Water and 

Space Heating. In a first order it seems relevant because electricity use is correlated with the activity 

in dwellings, so it is a mean to represent the dynamic heating gains fairly well as a non-stationary and 

random process. However, only a fraction of this load might be transferred into internal gain in the 

building; washing machine and dishwasher reject hot water in the sewage which is the major limit. 

Figure 5 shows one internal gain profile for a week, and the aggregate internal gain load profile. The 

main advantage of this method is that the individual loads have the right property, they are able to be 

consistent with aggregate electricity load profile, in other words: what would see an aggregate 

dwelling. 

So, 116 hourly profiles of internal gain are injected in the building model randomly. In a first 

attempt it seems right but internal gain load profile should be selected in accordance with the type of 

houses. Based on statistical analysis from household energy survey it would be more consistent to 

select a level of internal heat gain relative to the surface of the dwelling. However, such statistics are 

not available now. 
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Figure 5 - Heat gain load profile in winter 

2.6 Systems 

System efficiencies require attention to model aggregate electricity and gas loads. From thermal 

load, we need to create a function that transforms hourly SH needs into energy consumption of hybrid 

systems. Yet, it is common knowledge that nominal system efficiencies and seasonal efficiencies 

might be very different. The factors affecting seasonal performance are: 

- The design of the distribution mean : radiator, slab, temperature levels; 

- Maintenance of the distribution, by ensuring that fluid flow rate is not decreased by fouling ; 

- The sizing of the heating system ; 

- Efficiency of the systems at full and part load condition. 

Today, we can access full load performance from manufacturer, and part load efficiencies for 

standard conditions. Yet the accurate modelling of individual heating systems is nearly impossible, the 

behaviour of sensors and regulation rules is subjected to many disturbances. So the calculation of 

energy consumption at hourly time steps seems the only way, and relevant according to the literature. 

In [20], the authors propose a modelling approach of part load factor that suits on-off cycle 

machines and modulating machines. With 3 three test points it is possible to obtain the relationship 

between part load ratio and part load factor. The determination of Coefficient Of Performance, COP, 

(for heat pump or boiler) at full load are computed with piecewise function, dependent on the start or 

return temperature of heating loop. Before, the regulation has to be chosen:  constant start 

temperature, or Outdoor Compensated Temperature. The COP at partial load is computed and the 

electrical load is then calculated. In case the installed capacity is not sufficient to produce enough 

thermal power, a back-up system is launched. In [21] µCHP performances of various technologies are 

tested and reported. Reciprocating internal combustion engine and Stirling engine are reviewed by the 

authors and offer a complete analysis of µCHP efficiencies at full and part loads. All these data will be 

implemented in the model. 

The downside of such approach is that knowledge of installed systems in the building stock is very 

limited. To remediate, conventional seasonal performance agreed by the industry can be found in the 

performance audit of applied to existing households. Those values are implemented in first simulations 

to check annual energy consumption from Space Heating Demand, for example in calculation models 

used for building thermal regulation compliance. 
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2.7 Behavioural variables 

Energy practices in dwellings have a strong influence on SH demand, as seen in the literature 

review. Yet, surveys on temperature management are far and few between. In [12], statistics on 

thermostat settings during day and night and thermostat dead-band are collected from local survey. 

In our approach, the behaviour of the occupants will be a variable (mean heating temperature of the 

dwelling and use of a thermostat to reduce temperature in some time periods), to adjust annual space 

heating consumption. Then the consistency of the overall model is discussable regarding those 

variables. 

Socio-demographic variables are not included in our bottom-up approach due to a lack of knowledge 

but each segment actually modelled could be disaggregate with sub-groups including details on 

energy practices. Further developments are required to obtain statistics on energy practices in order to 

give more strength to the bottom-up model. 

3 CASE STUDY 

To illustrate potential results of the developed model, we will consider a region which includes 900 

000 dwellings for the heating season 2005/2006. For this period, we have: 

- Detailed physical description of the building stock, 700 segments representing 165 000 gas 

heated homes and 365 000 electricity heated homes 

- Hourly profiles of temperature and solar radiation in four locations of the region; 

- Annual Space Heating energy consumption for gas and electricity for homes per vintage [17]; 

- Internal heat gain profiles; 

- Conventional seasonal performances of existing heating systems. 

3.1 Comparison of model and data for year 2006 

As a first shoot, the calculation of heating load profiles are processed with the simplified load 

models with constant thermostat settings. Figure 6 and Figure 7 present energy consumption from the 

bottom-up model and from CEREN. Figure 6 presents some part of extra energy consumption (in 

addition of electricity) that can be associated to wood from fireplaces. The portion of wood is extracted 

from CEREN database and the same portion is applied to the model (as it cannot be modelled, or 

integrated in the behaviour component). To obtain those values, thermostat settings have been 

artificially modified to make the bottom-up calculation match with CEREN data, those values are 

reported in Table 3. This artefact seems compulsory since the annual gas and electricity consumption 

are quite uniform through all vintages. Indeed, since 1975 thermal building regulations have imposed 

minimal performance of building design. Surprisingly the consumption has not decrease drastically 

since 1975, instead we assume the level of comfort is higher. Another explanation is that thermal 

performance of old housing has been underestimated in the calculation model. 

Table 3 - artificial thermostat temperature (in °C constant temperature for the whole surface of the 
dwelling) 

Vintage Gas Electricity 

-1915 13 13 

1915 - 1948 16 13 

1949 - 1974 17 16 

1975 - 1981 18 16 

1982 - 1989 20 20 

1990 - 1999 20 20 
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1999 + 20 20 

 

 

Figure 6 - Electricity consumption for heating 

 

 

Figure 7 - Gas consumption for Space Heating 
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3.2 Insertion of hybrid heating systems in electricity heated building stock 

Once the bottom-up model is validated with annual energy consumption, we can claim to study 

the impact of hybrid systems on gas and electricity loads. In a hypothetical scenario, we assume that 

20% of electricity heated households are replaced by 10% of hybrid heat pump systems and 10% of 

µCHP Stirling engine. This scenario does not intend to be realistic or in accordance with any 

prospective study, it is purely illustrative.  

From Figure 8, the previous computed aggregate electrical load from of electricity heated home 

is plotted as it is in 2006. Then, 10% of Hybrid Heat Pump and 10% of micro-CHP are inserted 

randomly in the electricity heated dwelling stock and the aggregate electricity load is plotted on the 

same graph. With this chart, we observe the discrepancy between the 2006 electricity load, with a 

daily peak load of 1500 MW, and the modified load from the introduction of 10% of Hybrid Heat Pump 

and 10% of µCHP. With such assumptions, a peak load reduction of 21% is measured. Hybrid Heat 

Pumps have been implemented to switch to gas consumption only below 7°C. The breakdown of the 

electricity load behaviour for each hybrid technology is illustrated on the lower part of Figure 8. We 

notice that, at peak load conditions, hybrid heat pumps do not consume any electricity whereas micro 

CHPs produce more than 20 MW. This illustrates the potential peak load reduction leverage obtained 

by replacing electrical heating systems with hybrid gas systems. In this case, we assume that the 

amount of wood to heat dwellings remains the same even if the system is changed. 

 

Figure 8 - Aggregate electricity loads (upper plot) and breakdown per technologies (lower plot) 

On the other hand, gas peak load is expected to increase due to a higher number of 

consumers. On Table 4, we compare the peak and the total energy of gas and electricity load. It is 

interesting to notice that the gas peak load increases significantly in order to relieve electricity network. 

Thanks to hybrid systems the electricity peak is reduced by 21.4% whereas the electricity 

consumption decreases less, 19.8%.  So the interaction of gas and electricity loads can relieve a 

network and constraint another. This duality is represented on Figure 9, for current situation and 

modified loads, the Energy Signatures of aggregate gas and electricity loads are plotted. For each 

signature, the load gradient in MW/°C and the balance temperature in °C are printed. The electricity 

gradient decreases from 71 to 55.4 MW/°C, whereas the gas gradient increases from 67.3 to 88.7 

MW/°C. Thus, it shows that gas peak load increases from 1400 MW to 1816 MW. Therefore, 

integrated planning is a key point to optimise distribution network infrastructures. 
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Table 4 - Evolution of gas and electricity load with the scenario 

% Electricity Gas 

Energy -19.8 27.3 

Peak Load -21.4 30.8 

 

The ES of Figure 9 is part of the validation process of the aggregate load curve dynamic (from 

Transport System Operator). Indeed, for Sundays in winter, SH demand in the residential sector is 

predominant on other sectors and so ES of aggregate load could provide more consistency to this 

analyse. The value of load gradient and balance temperature could be compared to simulated ones. 

Unfortunately, no regional data of gas and electricity are provided at the moment. 

 

Figure 9 – Energy Signature (ES) of aggregate load for current situation (upper charts) and modified with 
20% of hybrid system (lower charts). Gradient and balance temperature are printed. 

 

4 CONCLUSIONS AND PERSPECTIVES 

With this framework, we are able to simulate the impact of hybrid gas and electricity 

technologies at regional scale. Yet the state of development is limited to houses, and flats have to be 

included in the analysis to provide a complete picture of the residential space heating consumption. 

The overall Engineer Bottom-Up model contains every block to build and simulate a likely aggregate 

load, and investigate the impact of different heating technologies. Attention has been paid to develop a 

consistent and realistic simulation tool of aggregate load at daily time steps with an emphasis on data 

availability. 

As mentioned, the heating behaviour of occupants is the main barrier to the validation of the 

model. Further studies should feed the behavioural part of the Bottom Up model to improve the 

consistency of the results. Sensitivity analysis should help us to orient the need for accurate data. 

Further development is required to investigate the aggregate load behaviour depending on input 
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variables. Such knowledge will help to validate assumptions or to orient the modelling into other 

perspectives. For instance, statistical distribution of setback thermostat temperature will introduce 

changes on the aggregate load property, especially on intra-day load behaviour. Further research is 

on the way to compare intra-day electricity load and simulation. 

The simulation of different hybrid technologies will be processed. µCHP technologies with 

different prime-movers may result in higher potential benefits that the Stirling engine presented here. 

From this case study, we illustrate the role of hybrid technology to decrease electricity peak load and 

electricity demand to a lower extent.  

The developed methodology will help regional planning decision maker to consider hybrid gas-

electricity technologies. Today only centralised solution (especially combined cycle power plants) are 

considered but demand side management with hybrid technologies deserve to be deemed too. Gas 

and electricity distribution network interaction will relieve electricity generation capacity and transfer 

high loads to the gas infrastructure which is more reliable and flexible in France than the electricity 

one. In addition to load management, externality study on CO2 abatement might complete the 

infrastructure optimisation issue. The daily resolution is also particularly well adapted to this issue. 
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